Data import

Functions for importing external data and converting other R object as phyloseq or reverse converting

import_SE()

Convert inputs into SummarizedExperiment object

import_dada2()

Convert the output of dada2 into phyloseq object

import_qiime2()

Convert the qiime2 output of dada2 into phyloseq object

phyloseq2DESeq2()

Convert phyloseq-class object to DESeqDataSet-class object

phyloseq2edgeR()

Convert phyloseq data to edgeR DGEList object

phyloseq2metagenomeSeq() otu_table2metagenomeSeq()

Convert phyloseq data to MetagenomeSeq MRexperiment object

Miscellaneous

Functions to manipulate object

aggregate_taxa()

Aggregate Taxa

summarize_taxa()

Summarize taxa into a taxonomic level within each sample

subset_marker()

Subset microbiome markers

Data Processing

Functions to precess data before test

abundances()

Extract taxa abundances

transform_abundances()

Transform the abundances in profile sample by sample

trim_prevalence()

Trimming samples or features whose prevalence is less than threshold

filter_abundance()

Filtering feature who is low relative abundance or unclassified

impute_abundance()

Imputation methods on missing value

normalize(<phyloseq>) normalize(<otu_table>) normalize(<data.frame>) normalize(<matrix>) norm_rarefy() norm_tss() norm_css() norm_rle() norm_tmm() norm_clr() norm_cpm()

Normalize the microbial abundance data

scale_variables()

Data scaling adjusts each variable/feature

Example data

data-Zeybel_2022_gut Zeybel_2022_gut

gut microbiota from Zeybel et al. - 2022 paper

data-Zeybel_2022_gut_paired Zeybel_2022_gut_paired

Paired gut microbiota from Zeybel et al. - 2022 paper

data-Zeybel_2022_metabolite Zeybel_2022_metabolite

fecal metabolites from Zeybel et al. - 2022 paper

data-Zeybel_2022_metabolite_paired Zeybel_2022_metabolite_paired

Paired fecal metabolites from Zeybel et al. - 2022 paper

data-Zeybel_2022_oral Zeybel_2022_oral

oral microbiota from Zeybel et al. - 2022 paper

data-Zeybel_2022_oral_paired Zeybel_2022_oral_paired

Paired oral microbiota from Zeybel et al. - 2022 paper

data-Zeybel_2022_protein Zeybel_2022_protein

serum protein from Zeybel et al. - 2022 paper

data-Zeybel_2022_protein_paired Zeybel_2022_protein_paired

Paired serum protein from Zeybel et al. - 2022 paper

data-caporaso caporaso

16S rRNA data from "Moving pictures of the human microbiome"

data-ecam ecam

Data from Early Childhood Antibiotics and the Microbiome (ECAM) study

data-enterotypes_arumugam enterotypes_arumugam

Enterotypes data of 39 samples

Community Analysis

Functions to investigate association between variables and microbiota community

run_betadisper()

Multivariate homogeneity of groups dispersions (variances)

run_ANOSIM()

Analysis of Similarity (ANOSIM)

run_distance()

Calculate the distance among samples

run_MANTEL()

Mantel Test (MANTEL)

run_MRPP()

Multi-response Permutation Procedures (MRPP)

run_PERMANOVA()

Permutational multivariate analysis of variance (PERMANOVA)

run_ord()

Ordination for microbiota data

get_alphaindex()

Calculating index of Alpha diversity on microbiota data

Differential analysis

Functions for identifying the microbiome markers

run_aldex()

Perform differential analysis using ALDEx2

run_ancom()

Perform differential analysis using ANCOM

run_ancombc()

Differential analysis of compositions of microbiomes with bias correction (ANCOM-BC).

run_deseq2()

Perform DESeq differential analysis

run_edger()

Perform differential analysis using edgeR

run_lefse()

Liner discriminant analysis (LDA) effect size (LEFSe) analysis

run_limma_voom()

Differential analysis using limma-voom

run_metagenomeseq()

metagenomeSeq differential analysis

run_simple_stat()

Simple statistical analysis of metagenomic profiles

run_sl()

Identify biomarkers using supervised leaning (SL) methods

run_test_multiple_groups()

Statistical test for multiple groups

run_test_two_groups()

Statistical test between two groups

run_marker()

Find makers (differentially expressed metagenomic features)

postHocTest()

Build postHocTest object

run_metabolomeDA()

Perform differential analysis on metabolomic data

Microbiome marker

S4 class and methods for microbiomeMarker

microbiomeMarker()

Build microbiomeMarker-class objects

show(<microbiomeMarker>)

The main class for microbiomeMarker data

marker_table-class

The S4 class for storing microbiome marker information

marker_table()

Build or access the marker_table

`marker_table<-`()

Assign marker_table to object

`otu_table<-`(<microbiomeMarker>,<otu_table>) `otu_table<-`(<microbiomeMarker>,<phyloseq>) `otu_table<-`(<microbiomeMarker>,<microbiomeMarker>)

Assign a new OTU table

abundances()

Extract taxa abundances

nmarker()

Get the number of microbiome markers

show(<postHocTest>)

The postHocTest Class, represents the result of post-hoc test result among multiple groups

`[`(<marker_table>,<ANY>,<ANY>,<ANY>)

Extract marker_table object

Statistical tookits

Functions to do statistical test

calculate_median_abundance()

Calculate the Median abundance of features per group (two groups)

calculate_mean_abundance()

Calculate the Mean abundance of features per group (two groups)

calculate_MeanRank_abundance()

Calculate the Rank Mean abundance of features per group(two groups)

calculate_geometricmean_abundance()

Calculate the Mean abundance of features per group (two groups)

calculate_occurrence_taxa()

Calculate the Occurrence of features per group (two groups)

run_OddRatio()

95% confidential interval Odds Ratio

run_CI()

Confidence Interval

run_group.CI()

Group Confidence Interval

run_STDERR()

Standard Error

run_group.STDERR()

Group Standard Error Interval

run_summarySE()

Summarizes data for mean median sd etc

insertRow()

Insert Row into a Matrix

insertCol()

Insert Row into a Matrix

Additional tookits

Additional Functions

default_color()

generate multiple colors for visualization

check_sample_names()

check whether samples' names start with numeric and then paste "S_"

get_GUniFrac()

Generalized UniFrac distances for comparing microbial communities

get_eigValue()

Extract and visualize the eigenvalues/variances of dimensions

confounder()

Confounder analysis

Functions to visualization

visualization Functions

plot_ord()

Visualization of Ordination results with scatterplot

plot_volcano()

plot the differential analysis results by volcano plot