R/process_filter_abundance.R
filter_abundance.Rd
whether to filter the low relative abundance or unclassified feature by the threshold. Here, we choose the following criterion:
Feature more than Mean absolute or relative abundance across all samples;
Feature more than Minimum absolute or relative abundance at least one sample.
(Required). a phyloseq::phyloseq
or
SummarizedExperiment::SummarizedExperiment
object.
(Optional). character. taxonomic level to summarize,
default the top level rank of the ps
. taxonomic level(Kingdom, Phylum,
Class, Order, Family, Genus, Species, Strains; default: NULL).
(Optional). numeric. Threshold for Mean
absolute (integer) or relative (float) abundance all samples (default, 0
).
(Optional). numeric. Threshold for Minimum
absolute (integer) or relative (float) abundance at least one sample (default, 0
).
(Optional). logical. whether to filter the unclassified taxa (default TRUE
).
a phyloseq::phyloseq
or
SummarizedExperiment::SummarizedExperiment
object,
where each row represents a feature and each col represents the
feature abundance of each sample.
Thingholm, Louise B., et al. "Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition." Cell host & microbe 26.2 (2019): 252-264.
if (FALSE) {
# phyloseq object
data("Zeybel_2022_gut")
Zeybel_2022_gut_counts <- phyloseq::transform_sample_counts(
Zeybel_2022_gut, function(x) {round(x * 10^7)})
# absolute abundance
ps <- filter_abundance(
object = Zeybel_2022_gut_counts,
level = NULL,
cutoff_mean = 100,
cutoff_one = 1000,
unclass = FALSE)
# relative abundance
ps <- filter_abundance(
object = Zeybel_2022_gut,
level = "Phylum",
cutoff_mean = 1e-04,
cutoff_one = 1e-03,
unclass = TRUE)
# SummarizedExperiment object
data("Zeybel_2022_protein")
filter_abundance(
object = Zeybel_2022_protein,
cutoff_mean = 5,
cutoff_one = 8)
}