Differential expression analysis contains foldchange analysis, VIP and t-test on metabolomic data.
(Optional). a SummarizedExperiment::SummarizedExperiment
object with raw intensity values (default: NULL).
(Optional). a SummarizedExperiment::SummarizedExperiment
object with normalized intensity values (default: NULL).
(Required). character. grouping variable for test.
(Required). two characters. variable' names.
(Optional). character. method for differential analysis (default: "all"). options include:
"all": three methods.
"fc": foldchange analysis.
"vip": VIP analysis.
"t": t-test analysis.
(Optional). character. method for VIP (default: "PLS"), options include:
"PLS": Partial Least Squares Discriminant Analysis.
"OPLS": Orthogonal Partial Least Square Discriminant Analysis.
(Optional). Numeric. the Prevalence threshold (default: 0.1).
(Optional). character. method to adjust p-values by.
Options include "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr", "none". See stats::p.adjust()
for more details (default: "BH").
A data frame of the differential results.
To identify the potential significant metabolites is important in metabolomics. Here, we use three methods to obtain the results:
FoldChange: the raw intensity values;
VIP (Variable important in projection) by PLS-DA: the normalized intensity values;
T-test: the normalized intensity values.
Combining all the results and providing more choice for users to determine the differential metabolites (Recommend: Log2FoldChange and AdjustedPvalue).
data("Zeybel_2022_protein")
Zeybel_2022_protein_imput <- impute_abundance(
Zeybel_2022_protein,
group = "LiverFatClass",
method = "knn")
Zeybel_2022_protein_norm <- scale_variables(
Zeybel_2022_protein_imput,
method == "zscore")
DA_results <- run_metabolomeDA(
object_raw = Zeybel_2022_protein,
object_norm = Zeybel_2022_protein_norm,
variable = "LiverFatClass",
variable_name = c("None", "Severe"))
#> PLS-DA
#> 21 samples x 72 variables and 1 response
#> standard scaling of predictors and response(s)
#> R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2
#> Total 0.0898 0.823 0.291 0.221 1 0 0.05 0.05
if (FALSE) {
}