Confounding variables may mask the actual differential features. This function utilizes constrained correspondence analysis (CCA) to measure the confounding factors.
confounder(
ps,
target_var,
norm = "none",
confounders = NULL,
permutations = 999,
...
)
a phyloseq::phyloseq
object.
character, the variable of interest
norm the methods used to normalize the microbial abundance data. See
normalize()
for more details.
the confounding variables to be measured, if NULL
, all
variables in the meta data will be analyzed.
the number of permutations, see vegan::anova.cca()
.
extra arguments passed to vegan::anova.cca()
.
a data.frame
contains three variables: confounder,
pseudo-F and p value.
data(caporaso)
confounder(caporaso, "SampleType", confounders = "ReportedAntibioticUsage")
#> confounder pseudo_F pvalue
#> 1 ReportedAntibioticUsage 1.193135 0.255