Chapter 3 Data Processing
Outline of this Chapter:
3.2 Importing Data
- Converting the output of dada2 into phyloseq object
seq_tab <- readRDS(
system.file("extdata", "dada2_seqtab.rds",
package = "MicrobiomeAnalysis"))
tax_tab <- readRDS(
system.file("extdata", "dada2_taxtab.rds",
package = "MicrobiomeAnalysis"))
sam_tab <- read.table(
system.file("extdata", "dada2_samdata.txt",
package = "MicrobiomeAnalysis"),
sep = "\t", header = TRUE, row.names = 1)
ps_dada2 <- import_dada2(
seq_tab = seq_tab,
tax_tab = tax_tab,
sam_tab = sam_tab)
ps_dada2
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 232 taxa and 20 samples ]
## sample_data() Sample Data: [ 20 samples by 4 sample variables ]
## tax_table() Taxonomy Table: [ 232 taxa by 6 taxonomic ranks ]
## refseq() DNAStringSet: [ 232 reference sequences ]
- Converting the qiime2 output of dada2 into phyloseq object
otuqza_file <- system.file(
"extdata", "table.qza",
package = "MicrobiomeAnalysis")
taxaqza_file <- system.file(
"extdata", "taxonomy.qza",
package = "MicrobiomeAnalysis")
sample_file <- system.file(
"extdata", "sample-metadata.tsv",
package = "MicrobiomeAnalysis")
treeqza_file <- system.file(
"extdata", "tree.qza",
package = "MicrobiomeAnalysis")
ps_qiime2 <- import_qiime2(
otu_qza = otuqza_file, taxa_qza = taxaqza_file,
sam_tab = sample_file, tree_qza = treeqza_file
)
ps_qiime2
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 770 taxa and 34 samples ]
## sample_data() Sample Data: [ 34 samples by 9 sample variables ]
## tax_table() Taxonomy Table: [ 770 taxa by 7 taxonomic ranks ]
## phy_tree() Phylogenetic Tree: [ 770 tips and 768 internal nodes ]
- Convertings inputs into SummarizedExperiment object
data("Zeybel_2022_protein")
assay <- SummarizedExperiment::assay(Zeybel_2022_protein) %>%
data.frame()
rowData <- SummarizedExperiment::rowData(Zeybel_2022_protein) %>%
data.frame()
colData <- SummarizedExperiment::colData(Zeybel_2022_protein) %>%
data.frame()
metadata <- list(lab="hua", type="protein")
assay <- assay[1:10, 1:10]
se_protein <- import_SE(
object = assay,
rowdata = rowData,
coldata = colData,
metadata = metadata)
se_protein
## class: SummarizedExperiment
## dim: 10 10
## metadata(2): lab type
## assays(1): ''
## rownames(10): IL8 VEGFA ... uPA IL6
## rowData names(3): ProteinID LOD prop
## colnames(10): P101001 P101003 ... P101013 P101016
## colData names(47): PatientID Gender ... Right_leg_fat_free_mass Right_leg_total_body_water
3.3 Extracting specific levels
- Extracting “Genus” levels phyloseq object
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 66 taxa and 20 samples ]
## sample_data() Sample Data: [ 20 samples by 4 sample variables ]
## tax_table() Taxonomy Table: [ 66 taxa by 7 taxonomic ranks ]
3.4 Summarizing specific levels
- Phyloseq object contains from Kingdom to the the specific taxonomic levels (Phylum)
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 66 taxa and 20 samples ]
## sample_data() Sample Data: [ 20 samples by 4 sample variables ]
## tax_table() Taxonomy Table: [ 66 taxa by 1 taxonomic ranks ]
3.5 Data Transformation
7 methods to transform individual values (by individual value).
“log10”, the transformation is log10(object), and if the data contains zeros the transformation is log10(1 + object).
“log10p”, the transformation is log10(1 + object).
“log2”, the transformation is log2(object), and if the data contains zeros the transformation is log2(1 + object).
“log2p”, the transformation is log2(1 + object).
“SquareRoot”, the transformation is Square Root.
“CubicRoot”, the transformation is Cubic Root.
“logit”, the transformation is Zero-inflated Logit Transformation (Does not work well for microbiome data).
Here is for phyloseq-class
.
data("Zeybel_2022_gut")
ps_transform <- transform_abundances(
object = Zeybel_2022_gut,
level = "Phylum",
transform = "log10p")
head(ps_transform@otu_table@.Data[, 1:5], 3)
## P101003 P101007 P101010 P101012 P101018
## p__Actinobacteria -1.651096 -2.0986943 -2.5452009 -1.6773074 -1.8931057
## p__Bacteroidetes -0.330115 -0.1437857 -0.3379679 -0.1574846 -0.1295813
## p__Chloroflexi 0.000000 0.0000000 0.0000000 0.0000000 0.0000000
- Here is for
SummarizedExperiment-class
.
data("Zeybel_2022_protein")
se_transform <- transform_abundances(
object = Zeybel_2022_protein,
transform = "SquareRoot")
head(assay(se_transform)[, 1:5], 3)
## P101001 P101003 P101004 P101007 P101009
## IL8 2.246691 2.063092 2.170020 2.400327 2.168238
## VEGFA 3.344589 3.302819 3.246115 3.321395 3.258289
## CD8A 3.398494 3.185073 3.132900 3.262700 3.075131
3.6 Data Imputation
11 methods to impute missing value (NAs or Zeros)
“LOD”: specific Limit Of Detection which provides by user.
“half_min”: half minimal values across samples except zero.
“median”: median values across samples except zero.
“mean”: mean values across samples except zero.
“min”: minimal values across samples except zero.
“knn”: k-nearest neighbors samples.
“rf”: nonparametric missing value imputation using Random Forest.
“global_mean”: a normal distribution with a mean that is down-shifted from the sample mean and a standard deviation that is a fraction of the standard deviation of the sample distribution.
“svd”: missing values imputation based Singular value decomposition.
“QRILC”: missing values imputation based quantile regression. (default: “none”).
phyloseq-class
as inputs
data("Zeybel_2022_gut")
ps_impute <- impute_abundance(
object = Zeybel_2022_gut,
level = "Phylum",
group = "LiverFatClass",
ZerosAsNA = TRUE,
RemoveNA = TRUE,
cutoff = 20,
method = "knn")
head(ps_impute@otu_table@.Data[, 1:5], 3)
## P101003 P101007 P101010 P101012 P101018
## p__Actinobacteria 0.0223308 0.0079672 0.0028497 0.0210229 0.0127907
## p__Bacteroidetes 0.4676113 0.7181486 0.4592320 0.6958497 0.7420252
## p__Firmicutes 0.4818712 0.2715033 0.4577191 0.2712132 0.1701021
- Inputs are from
SummarizedExperiment-class
.
data("Zeybel_2022_protein")
se_impute <- impute_abundance(
object = Zeybel_2022_protein,
group = "LiverFatClass",
ZerosAsNA = TRUE,
RemoveNA = TRUE,
cutoff = 20,
method = "knn")
head(assay(se_impute)[, 1:5], 3)
## P101001 P101003 P101004 P101007 P101009
## IL8 5.047325 4.25600 4.70867 5.76131 4.70094
## VEGFA 11.186140 10.90848 10.53712 11.03153 10.61631
## CD8A 11.549635 10.14454 9.81491 10.64507 9.45627
3.7 Data Normalization
Normalizing the OTU_table in phyloseq-class object sample by sample to reduce the effects of systematic differences such as library size (by sample).
“rarefy”: random subsampling counts to the smallest library size in the data set.
“TSS”: total sum scaling, also referred to as “relative abundance”, the abundances were normalized by dividing the corresponding sample library size.
“TMM”: trimmed mean of m-values. First, a sample is chosen as reference. The scaling factor is then derived using a weighted trimmed mean over the differences of the log-transformed gene-count fold-change between the sample and the reference.
“RLE”, relative log expression, RLE uses a pseudo-reference calculated using the geometric mean of the gene-specific abundances over all samples. The scaling factors are then calculated as the median of the gene counts ratios between the samples and the reference.
“CSS”: cumulative sum scaling, calculates scaling factors as the cumulative sum of gene abundances up to a data-derived threshold.
“CLR”: centered log-ratio normalization.
“CPM”: pre-sample normalization of the sum of the values to 1e+06.
data("caporaso")
ps_norm <- normalize(
object = caporaso,
method = "TSS")
head(ps_norm@otu_table@.Data[, 1:5], 3)
## L1S140 L1S208 L1S8 L1S281 L3S242
## New.CleanUp.ReferenceOTU647 0 0.0000000000 0 0 0
## 14030 0 0.0000000000 0 0 0
## New.CleanUp.ReferenceOTU858 0 0.0001013993 0 0 0
3.8 Data Scaling
Data scaling adjusts each variable/feature by a scaling factor computed based on the dispersion of the variable (by variable/feature).
“mean_center”: values minus mean statistic.
“zscore”: mean-centered and divided by the standard deviation of each variable.
“pareto”: mean-centered and divided by the square root of the standard deviation of each variable.
“range”: mean-centered and divided by the range of each variable. (default: “none”).
phyloseq-class
as inputs
data("enterotypes_arumugam")
ps_scale <- scale_variables(
object = enterotypes_arumugam,
level = "Phylum",
method = "range")
head(ps_scale@otu_table@.Data[, 1:5], 3)
## AM-AD-1 AM-AD-2 AM-F10-T1 AM-F10-T2 DA-AD-1
## Acidobacteria 0.00000000 0.00000000 0.0000000 0.000000000 0.0000000
## Actinobacteria 0.03379937 -0.05187261 0.0180014 0.882710081 -0.1132282
## Bacteroidetes -0.21758868 -0.21769150 -0.0870175 0.004106405 0.4083952
Inputs are from SummarizedExperiment-class
.
data("Zeybel_2022_protein")
se_impute <- impute_abundance(
object = Zeybel_2022_protein,
group = "LiverFatClass",
ZerosAsNA = TRUE,
RemoveNA = TRUE,
cutoff = 20,
method = "knn")
se_scale <- scale_variables(
se_impute,
method = "zscore")
head(assay(se_scale)[, 1:5], 3)
## P101001 P101003 P101004 P101007 P101009
## IL8 0.1612462 -1.49334575 -0.5468520 1.6541269 -0.5630148
## VEGFA 0.8041564 0.08413878 -0.8788582 0.4032275 -0.6735057
## CD8A 2.8143331 0.18882517 -0.4271091 1.1240968 -1.0972504
3.9 Data Trimming
Trimming samples or features whose prevalence is less than threshold
“both”, prevalence of features and samples more than cutoff.
“feature”, prevalence of features more than cutoff.
“feature_group”, prevalence of features more than cutoff by groups.
“sample”, prevalence of samples more than cutoff.
phyloseq-class
as inputs
data("Zeybel_2022_gut")
ps_trim <- trim_prevalence(
Zeybel_2022_gut,
group = "LiverFatClass",
level = "Phylum",
cutoff = 0.1,
trim = "feature_group")
ps_trim
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 5 taxa and 42 samples ]
## sample_data() Sample Data: [ 42 samples by 46 sample variables ]
## tax_table() Taxonomy Table: [ 5 taxa by 3 taxonomic ranks ]
Inputs are from SummarizedExperiment-class
.
data("Zeybel_2022_protein")
se_trim <- trim_prevalence(
Zeybel_2022_protein,
cutoff = 0.99,
trim = "both")
se_trim
## class: SummarizedExperiment
## dim: 66 54
## metadata(0):
## assays(1): ''
## rownames(66): IL8 VEGFA ... TNFB CSF_1
## rowData names(3): ProteinID LOD prop
## colnames(54): P101001 P101003 ... P101095 P101096
## colData names(47): PatientID Gender ... Right_leg_fat_free_mass Right_leg_total_body_water
3.10 Data Filtering
Filtering feature who is low relative abundance or unclassified (Ref: (Thingholm et al. 2019))
Feature is more than Mean relative abundance across all samples;
Feature is more than Minimum relative abundance at least one sample.
phyloseq-class
as inputs
data("Zeybel_2022_gut")
Zeybel_2022_gut_counts <- phyloseq::transform_sample_counts(
Zeybel_2022_gut, function(x) {round(x * 10^7)})
# absolute abundance
ps_filter_absolute <- filter_abundance(
object = Zeybel_2022_gut_counts,
level = "Genus",
cutoff_mean = 100,
cutoff_one = 1000,
unclass = FALSE)
ps_filter_absolute
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 94 taxa and 42 samples ]
## sample_data() Sample Data: [ 42 samples by 46 sample variables ]
## tax_table() Taxonomy Table: [ 94 taxa by 7 taxonomic ranks ]
# relative abundance
ps_filter_relative <- filter_abundance(
object = Zeybel_2022_gut,
level = "Genus",
cutoff_mean = 1e-04,
cutoff_one = 1e-03,
unclass = TRUE)
ps_filter_relative
## phyloseq-class experiment-level object
## otu_table() OTU Table: [ 67 taxa and 42 samples ]
## sample_data() Sample Data: [ 42 samples by 46 sample variables ]
## tax_table() Taxonomy Table: [ 67 taxa by 7 taxonomic ranks ]
Inputs are from SummarizedExperiment-class
.
data("Zeybel_2022_protein")
se_filter <- filter_abundance(
object = Zeybel_2022_protein,
cutoff_mean = 5,
cutoff_one = 8)
se_filter
## class: SummarizedExperiment
## dim: 39 54
## metadata(0):
## assays(1): ''
## rownames(39): VEGFA CD8A ... STAMBP CSF_1
## rowData names(3): ProteinID LOD prop
## colnames(54): P101001 P101003 ... P101095 P101096
## colData names(47): PatientID Gender ... Right_leg_fat_free_mass Right_leg_total_body_water
3.11 Systematic Information
## ─ Session info ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## setting value
## version R version 4.1.3 (2022-03-10)
## os macOS Monterey 12.2.1
## system x86_64, darwin17.0
## ui RStudio
## language (EN)
## collate en_US.UTF-8
## ctype en_US.UTF-8
## tz Asia/Shanghai
## date 2023-08-16
## rstudio 2023.06.1+524 Mountain Hydrangea (desktop)
## pandoc 3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
##
## ─ Packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## ade4 1.7-22 2023-02-06 [2] CRAN (R 4.1.2)
## ANCOMBC 1.4.0 2021-10-26 [2] Bioconductor
## annotate 1.72.0 2021-10-26 [2] Bioconductor
## AnnotationDbi 1.60.2 2023-03-10 [2] Bioconductor
## ape 5.7-1 2023-03-13 [2] CRAN (R 4.1.2)
## backports 1.4.1 2021-12-13 [2] CRAN (R 4.1.0)
## base64enc 0.1-3 2015-07-28 [2] CRAN (R 4.1.0)
## Biobase * 2.54.0 2021-10-26 [2] Bioconductor
## BiocGenerics * 0.40.0 2021-10-26 [2] Bioconductor
## BiocParallel 1.28.3 2021-12-09 [2] Bioconductor
## biomformat 1.22.0 2021-10-26 [2] Bioconductor
## Biostrings 2.62.0 2021-10-26 [2] Bioconductor
## bit 4.0.5 2022-11-15 [2] CRAN (R 4.1.2)
## bit64 4.0.5 2020-08-30 [2] CRAN (R 4.1.0)
## bitops 1.0-7 2021-04-24 [2] CRAN (R 4.1.0)
## blob 1.2.4 2023-03-17 [2] CRAN (R 4.1.2)
## bookdown 0.34 2023-05-09 [2] CRAN (R 4.1.2)
## broom 1.0.5 2023-06-09 [2] CRAN (R 4.1.3)
## bslib 0.5.0 2023-06-09 [2] CRAN (R 4.1.3)
## cachem 1.0.8 2023-05-01 [2] CRAN (R 4.1.2)
## callr 3.7.3 2022-11-02 [2] CRAN (R 4.1.2)
## caret * 6.0-94 2023-03-21 [2] CRAN (R 4.1.2)
## caTools 1.18.2 2021-03-28 [2] CRAN (R 4.1.0)
## cellranger 1.1.0 2016-07-27 [2] CRAN (R 4.1.0)
## checkmate 2.2.0 2023-04-27 [2] CRAN (R 4.1.2)
## class 7.3-22 2023-05-03 [2] CRAN (R 4.1.2)
## cli 3.6.1 2023-03-23 [2] CRAN (R 4.1.2)
## cluster 2.1.4 2022-08-22 [2] CRAN (R 4.1.2)
## codetools 0.2-19 2023-02-01 [2] CRAN (R 4.1.2)
## colorspace 2.1-0 2023-01-23 [2] CRAN (R 4.1.2)
## cowplot 1.1.1 2020-12-30 [2] CRAN (R 4.1.0)
## crayon 1.5.2 2022-09-29 [2] CRAN (R 4.1.2)
## crosstalk 1.2.0 2021-11-04 [2] CRAN (R 4.1.0)
## data.table * 1.14.8 2023-02-17 [2] CRAN (R 4.1.2)
## DBI 1.1.3 2022-06-18 [2] CRAN (R 4.1.2)
## DelayedArray 0.20.0 2021-10-26 [2] Bioconductor
## DESeq2 1.34.0 2021-10-26 [2] Bioconductor
## devtools 2.4.5 2022-10-11 [2] CRAN (R 4.1.2)
## digest 0.6.33 2023-07-07 [1] CRAN (R 4.1.3)
## dplyr * 1.1.2 2023-04-20 [2] CRAN (R 4.1.2)
## DT 0.28 2023-05-18 [2] CRAN (R 4.1.3)
## e1071 1.7-13 2023-02-01 [2] CRAN (R 4.1.2)
## ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.1.0)
## evaluate 0.21 2023-05-05 [2] CRAN (R 4.1.2)
## fansi 1.0.4 2023-01-22 [2] CRAN (R 4.1.2)
## farver 2.1.1 2022-07-06 [2] CRAN (R 4.1.2)
## fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.1.2)
## forcats * 1.0.0 2023-01-29 [2] CRAN (R 4.1.2)
## foreach 1.5.2 2022-02-02 [2] CRAN (R 4.1.2)
## foreign 0.8-84 2022-12-06 [2] CRAN (R 4.1.2)
## Formula 1.2-5 2023-02-24 [2] CRAN (R 4.1.2)
## fs 1.6.2 2023-04-25 [2] CRAN (R 4.1.2)
## future 1.33.0 2023-07-01 [2] CRAN (R 4.1.3)
## future.apply 1.11.0 2023-05-21 [2] CRAN (R 4.1.3)
## geepack * 1.3.9 2022-08-16 [1] CRAN (R 4.1.2)
## genefilter 1.76.0 2021-10-26 [2] Bioconductor
## geneplotter 1.72.0 2021-10-26 [2] Bioconductor
## generics 0.1.3 2022-07-05 [2] CRAN (R 4.1.2)
## GenomeInfoDb * 1.30.1 2022-01-30 [2] Bioconductor
## GenomeInfoDbData 1.2.7 2022-03-09 [2] Bioconductor
## GenomicRanges * 1.46.1 2021-11-18 [2] Bioconductor
## ggplot2 * 3.4.2 2023-04-03 [2] CRAN (R 4.1.2)
## glmnet 4.1-7 2023-03-23 [2] CRAN (R 4.1.2)
## globals 0.16.2 2022-11-21 [2] CRAN (R 4.1.2)
## glue 1.6.2 2022-02-24 [2] CRAN (R 4.1.2)
## gower 1.0.1 2022-12-22 [2] CRAN (R 4.1.2)
## gplots 3.1.3 2022-04-25 [2] CRAN (R 4.1.2)
## gridExtra 2.3 2017-09-09 [2] CRAN (R 4.1.0)
## gtable 0.3.3 2023-03-21 [2] CRAN (R 4.1.2)
## gtools 3.9.4 2022-11-27 [2] CRAN (R 4.1.2)
## hardhat 1.3.0 2023-03-30 [2] CRAN (R 4.1.2)
## here 1.0.1 2020-12-13 [2] CRAN (R 4.1.0)
## highr 0.10 2022-12-22 [2] CRAN (R 4.1.2)
## Hmisc * 5.1-0 2023-05-08 [2] CRAN (R 4.1.2)
## hms 1.1.3 2023-03-21 [2] CRAN (R 4.1.2)
## htmlTable 2.4.1 2022-07-07 [2] CRAN (R 4.1.2)
## htmltools 0.5.5 2023-03-23 [2] CRAN (R 4.1.2)
## htmlwidgets 1.6.2 2023-03-17 [2] CRAN (R 4.1.2)
## httpuv 1.6.11 2023-05-11 [2] CRAN (R 4.1.3)
## httr 1.4.6 2023-05-08 [2] CRAN (R 4.1.2)
## igraph 1.5.0 2023-06-16 [1] CRAN (R 4.1.3)
## impute 1.68.0 2021-10-26 [2] Bioconductor
## ipred 0.9-14 2023-03-09 [2] CRAN (R 4.1.2)
## IRanges * 2.28.0 2021-10-26 [2] Bioconductor
## iterators 1.0.14 2022-02-05 [2] CRAN (R 4.1.2)
## jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.1.0)
## jsonlite 1.8.7 2023-06-29 [2] CRAN (R 4.1.3)
## KEGGREST 1.34.0 2021-10-26 [2] Bioconductor
## KernSmooth 2.23-22 2023-07-10 [2] CRAN (R 4.1.3)
## knitr 1.43 2023-05-25 [2] CRAN (R 4.1.3)
## labeling 0.4.2 2020-10-20 [2] CRAN (R 4.1.0)
## later 1.3.1 2023-05-02 [2] CRAN (R 4.1.2)
## lattice * 0.21-8 2023-04-05 [2] CRAN (R 4.1.2)
## lava 1.7.2.1 2023-02-27 [2] CRAN (R 4.1.2)
## lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.1.2)
## limma 3.50.3 2022-04-07 [2] Bioconductor
## listenv 0.9.0 2022-12-16 [2] CRAN (R 4.1.2)
## locfit 1.5-9.8 2023-06-11 [2] CRAN (R 4.1.3)
## lubridate * 1.9.2 2023-02-10 [2] CRAN (R 4.1.2)
## magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.1.2)
## MASS 7.3-60 2023-05-04 [2] CRAN (R 4.1.2)
## Matrix 1.6-0 2023-07-08 [2] CRAN (R 4.1.3)
## MatrixGenerics * 1.6.0 2021-10-26 [2] Bioconductor
## MatrixModels 0.5-2 2023-07-10 [2] CRAN (R 4.1.3)
## matrixStats * 1.0.0 2023-06-02 [2] CRAN (R 4.1.3)
## memoise 2.0.1 2021-11-26 [2] CRAN (R 4.1.0)
## metagenomeSeq 1.36.0 2021-10-26 [2] Bioconductor
## mgcv 1.8-42 2023-03-02 [2] CRAN (R 4.1.2)
## microbiome 1.16.0 2021-10-26 [2] Bioconductor
## MicrobiomeAnalysis * 1.0.3 2023-08-16 [1] Bioconductor
## mime 0.12 2021-09-28 [2] CRAN (R 4.1.0)
## miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.1.0)
## ModelMetrics 1.2.2.2 2020-03-17 [2] CRAN (R 4.1.0)
## multcomp 1.4-25 2023-06-20 [2] CRAN (R 4.1.3)
## multtest 2.50.0 2021-10-26 [2] Bioconductor
## munsell 0.5.0 2018-06-12 [2] CRAN (R 4.1.0)
## mvtnorm 1.2-2 2023-06-08 [2] CRAN (R 4.1.3)
## nlme * 3.1-162 2023-01-31 [2] CRAN (R 4.1.2)
## nloptr 2.0.3 2022-05-26 [2] CRAN (R 4.1.2)
## nnet 7.3-19 2023-05-03 [2] CRAN (R 4.1.2)
## parallelly 1.36.0 2023-05-26 [2] CRAN (R 4.1.3)
## permute 0.9-7 2022-01-27 [2] CRAN (R 4.1.2)
## phyloseq * 1.38.0 2021-10-26 [2] Bioconductor
## pillar 1.9.0 2023-03-22 [2] CRAN (R 4.1.2)
## pkgbuild 1.4.2 2023-06-26 [2] CRAN (R 4.1.3)
## pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.1.0)
## pkgload 1.3.2.1 2023-07-08 [2] CRAN (R 4.1.3)
## plyr 1.8.8 2022-11-11 [2] CRAN (R 4.1.2)
## png 0.1-8 2022-11-29 [2] CRAN (R 4.1.2)
## polspline 1.1.23 2023-06-29 [1] CRAN (R 4.1.3)
## prettyunits 1.1.1 2020-01-24 [2] CRAN (R 4.1.0)
## pROC * 1.18.4 2023-07-06 [2] CRAN (R 4.1.3)
## processx 3.8.2 2023-06-30 [2] CRAN (R 4.1.3)
## prodlim 2023.03.31 2023-04-02 [2] CRAN (R 4.1.2)
## profvis 0.3.8 2023-05-02 [2] CRAN (R 4.1.2)
## promises 1.2.0.1 2021-02-11 [2] CRAN (R 4.1.0)
## proxy 0.4-27 2022-06-09 [2] CRAN (R 4.1.2)
## ps 1.7.5 2023-04-18 [2] CRAN (R 4.1.2)
## purrr * 1.0.1 2023-01-10 [2] CRAN (R 4.1.2)
## quantreg 5.95 2023-04-08 [2] CRAN (R 4.1.2)
## R6 2.5.1 2021-08-19 [2] CRAN (R 4.1.0)
## randomForest * 4.7-1.1 2022-05-23 [2] CRAN (R 4.1.2)
## rbibutils 2.2.13 2023-01-13 [2] CRAN (R 4.1.2)
## RColorBrewer 1.1-3 2022-04-03 [2] CRAN (R 4.1.2)
## Rcpp 1.0.11 2023-07-06 [1] CRAN (R 4.1.3)
## RCurl 1.98-1.12 2023-03-27 [2] CRAN (R 4.1.2)
## Rdpack 2.4 2022-07-20 [2] CRAN (R 4.1.2)
## readr * 2.1.4 2023-02-10 [2] CRAN (R 4.1.2)
## readxl 1.4.3 2023-07-06 [2] CRAN (R 4.1.3)
## recipes 1.0.6 2023-04-25 [2] CRAN (R 4.1.2)
## remotes 2.4.2 2021-11-30 [2] CRAN (R 4.1.0)
## reshape2 1.4.4 2020-04-09 [2] CRAN (R 4.1.0)
## reticulate 1.30 2023-06-09 [2] CRAN (R 4.1.3)
## rhdf5 2.38.1 2022-03-10 [2] Bioconductor
## rhdf5filters 1.6.0 2021-10-26 [2] Bioconductor
## Rhdf5lib 1.16.0 2021-10-26 [2] Bioconductor
## rlang 1.1.1 2023-04-28 [1] CRAN (R 4.1.2)
## rmarkdown 2.23 2023-07-01 [2] CRAN (R 4.1.3)
## rms * 6.7-0 2023-05-08 [1] CRAN (R 4.1.2)
## ropls * 1.26.4 2022-01-11 [2] Bioconductor
## rpart 4.1.19 2022-10-21 [2] CRAN (R 4.1.2)
## rprojroot 2.0.3 2022-04-02 [2] CRAN (R 4.1.2)
## RSQLite 2.3.1 2023-04-03 [2] CRAN (R 4.1.2)
## rstudioapi 0.15.0 2023-07-07 [2] CRAN (R 4.1.3)
## Rtsne 0.16 2022-04-17 [2] CRAN (R 4.1.2)
## S4Vectors * 0.32.4 2022-03-29 [2] Bioconductor
## sandwich 3.0-2 2022-06-15 [2] CRAN (R 4.1.2)
## sass 0.4.6 2023-05-03 [2] CRAN (R 4.1.2)
## scales 1.2.1 2022-08-20 [2] CRAN (R 4.1.2)
## sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.1.0)
## shape 1.4.6 2021-05-19 [2] CRAN (R 4.1.0)
## shiny 1.7.4.1 2023-07-06 [2] CRAN (R 4.1.3)
## SparseM 1.81 2021-02-18 [2] CRAN (R 4.1.0)
## stringi 1.7.12 2023-01-11 [2] CRAN (R 4.1.2)
## stringr * 1.5.0 2022-12-02 [2] CRAN (R 4.1.2)
## SummarizedExperiment * 1.24.0 2021-10-26 [2] Bioconductor
## survival 3.5-5 2023-03-12 [2] CRAN (R 4.1.2)
## TH.data 1.1-2 2023-04-17 [2] CRAN (R 4.1.2)
## tibble * 3.2.1 2023-03-20 [2] CRAN (R 4.1.2)
## tidyr * 1.3.0 2023-01-24 [2] CRAN (R 4.1.2)
## tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.1.2)
## tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.1.2)
## timechange 0.2.0 2023-01-11 [2] CRAN (R 4.1.2)
## timeDate 4022.108 2023-01-07 [2] CRAN (R 4.1.2)
## tinytex 0.45 2023-04-18 [2] CRAN (R 4.1.2)
## tzdb 0.4.0 2023-05-12 [2] CRAN (R 4.1.3)
## urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.1.0)
## usethis 2.2.2 2023-07-06 [2] CRAN (R 4.1.3)
## utf8 1.2.3 2023-01-31 [2] CRAN (R 4.1.2)
## vctrs 0.6.3 2023-06-14 [1] CRAN (R 4.1.3)
## vegan 2.6-4 2022-10-11 [2] CRAN (R 4.1.2)
## viridisLite 0.4.2 2023-05-02 [2] CRAN (R 4.1.2)
## withr 2.5.0 2022-03-03 [2] CRAN (R 4.1.2)
## Wrench 1.12.0 2021-10-26 [2] Bioconductor
## xfun 0.39 2023-04-20 [2] CRAN (R 4.1.2)
## XML 3.99-0.14 2023-03-19 [2] CRAN (R 4.1.2)
## xtable 1.8-4 2019-04-21 [2] CRAN (R 4.1.0)
## XVector 0.34.0 2021-10-26 [2] Bioconductor
## yaml 2.3.7 2023-01-23 [2] CRAN (R 4.1.2)
## zlibbioc 1.40.0 2021-10-26 [2] Bioconductor
## zoo 1.8-12 2023-04-13 [2] CRAN (R 4.1.2)
##
## [1] /Users/zouhua/Library/R/x86_64/4.1/library
## [2] /Library/Frameworks/R.framework/Versions/4.1/Resources/library
##
## ─ Python configuration ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## python: /Users/zouhua/opt/anaconda3/bin/python3.9
## libpython: /Users/zouhua/opt/anaconda3/lib/libpython3.9.dylib
## pythonhome: /Users/zouhua/opt/anaconda3:/Users/zouhua/opt/anaconda3
## version: 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:42:20) [Clang 14.0.6 ]
## numpy: /Users/zouhua/opt/anaconda3/lib/python3.9/site-packages/numpy
## numpy_version: 1.23.3
##
## NOTE: Python version was forced by use_python function
##
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────