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Abstract: Adequate calorie restriction (CR) as a healthy lifestyle is recommended not only for people
with metabolic disorders but also for healthy adults. Previous studies have mainly focused on the
beneficial metabolic effects of CR on obese subjects, while its effects on non-obese subjects are still scarce.
Here, we conducted a three-week non-controlled CR intervention in 41 subjects, with approximately
40% fewer calories than the recommended daily energy intake. We measured BMI, and applied
targeted metabolic profiling on fasting blood samples and shotgun metagenomic sequencing on
fecal samples, before and after intervention. Subjects were stratified into two enterotypes according
to their baseline microbial composition, including 28 enterotype Bacteroides (ETB) subjects and
13 enterotype Prevotella (ETP) subjects. CR decreased BMI in most subjects, and ETP subjects
exhibited a significantly higher BMI loss ratio than the ETB subjects. Additionally, CR induced
limited changes in gut microbial composition but substantial microbial-independent changes in blood
AAs, including a significant increase in 3-methylhistidine, a biomarker of the skeletal muscle protein
turnover. Finally, baseline abundances of seven microbial species, rather than baseline AA levels,
could well predict CR-induced BMI loss. This non-controlled intervention study revealed associations
between baseline gut microbiota and CR-induced BMI loss and provided evidence to accelerate the
application of microbiome stratification in future personalized nutrition intervention.
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1. Introduction

Calorie restriction (CR), a nutritional intervention of reduced energy intake [1], has shown to be
beneficial to reduce body weight, inflammation, and high insulin levels and extend the lifespan of
mice [2]. In humans, CR as a healthy lifestyle, is recommended not only for people with metabolic
disorders but also for healthy young adults. However, the majority of previous CR-based studies
have focused on obese subjects [3–5], studies on the effects of CR in non-obese healthy subjects,
including potential adverse effects on skeletal muscle, are still scarce [6].
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Increasing evidence has demonstrated that body mass index (BMI) is a strong covariate of human
gut microbiota. It is clear that obesity is associated with lower gut microbial diversity and richness [7,8].
In turn, the gut microbiota and specific microbial metabolites, such as short-chain fatty acids (SCFA,
the end products of fermentation of undigested carbohydrates by the gut microbiota), secondary bile
acids, and amino acids and their derivatives, have been implicated in modulating numerous aspects
of host energy and metabolism [7,9–13]. For instance, Liu et al. showed that compared to lean
controls, young obese adults had a significantly lower abundance of Bacteroides spp. and a significantly
higher level of plasma glutamate [7]. They further demonstrated that the obese-depleted Bacteroides
thetaiotaomicron, a glutamate-fermenting microbe, could reduce plasma glutamate levels and alleviate
high-fat, diet-induced, body-weight gain in mice [7]. Gut microbiota could also produce imidazole
propionate from histidine, which could impair host insulin signaling [13].

Although current studies have consistently shown that CR induces weight loss, findings on
CR-induced gut microbial changes in mice and humans are variable. Fabbiano et al. reported that
a short-term CR (3–6 week) led to mice gut microbiota alterations, such as a significant reduction in
the abundance of Firmicutes and an increase in abundance of Bacteroidetes and Proteobacteria [14].
Zhang and her colleagues showed that a life-long CR intervention could effectively increase gut levels
of Lactobacillus spp. and extend lifespan in mice [15]. They further revealed a significant enrichment of
Lactobacillus murinus induced by a 2-week CR in mice [16]. However, Ott et al. reported that a 4-week
very-low-calorie diet (800 kcal/day) intervention in obese women did not trigger significant changes in
their gut microbial alpha diversity and beta diversity [17]. They suggested that different subjects might
have individual-specific microbial responses to the same CR diet, and grouping metagenomic data
from all subjects might mask the CR-induced gut microbial changes [17]. Furthermore, the inconsistent
CR-related gut microbial changes among studies might also be partially attributed to the differences
in experimental design, such as the amount of energy intake and the duration of CR intervention.
Therefore, more human research work is needed to elaborate on the underlying mechanisms of CR,
gut microbiota, and host metabolism.

On the other hand, an increasing number of studies have revealed that the baseline or pre-treatment
stratification of gut microbial composition is associated with different responses to a certain dietary
intervention or treatment. Enterotypes, which are driven by dominant gut genera such as Bacteroides,
Prevotella, and Ruminococcus [18], have been widely used to stratify populations. Petia et al. reported
that a high Prevotella/Bacteroides ratio was associated with a beneficial response to barley kernels [19],
while Gu et al. revealed that treatment of naïve type 2 diabetes patients with higher abundance of
Bacteroides showed more considerable improvement in metabolic profiles than those with a higher
abundance of Prevotella, after three-month acarbose treatment [20]. It is also unclear whether the
different gut microbial composition is associated or could even predict host metabolic responses under
a given CR intervention.

Here, we applied targeted metabolic profiling and shotgun metagenomic sequencing, separately
on blood and fecal samples from 41 non-obese subjects (before and after a three-week CR intervention).
Our results revealed that the CR trial could effectively induce weight loss and alterations of host
amino acids, but show limited impacts on the gut microbial composition. Despite the absolute daily
intakes of protein during CR being substantially lower than regular recommendations, the levels
of multiple AAs and their derivatives were significantly increased after intervention in the overall
cohort. The significantly elevated level of 3-methylhistidine, a biomarker for skeletal muscle protein
turnover, indicated the existence of CR-induced skeletal muscle loss. We further demonstrated that the
baseline gut microbial composition (enterotypes or the relative abundances of seven species) could be
meaningful predictors of CR-induced BMI loss but was not associated with CR-induced changes of
blood AAs. On the contrary, baseline blood amino acid profiling showed no correlation to BMI loss,
in response to CR.
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2. Materials and Methods

2.1. Study Population

Volunteer-wanted posters were propagated at the China National Gene Bank in Shenzhen from
March to April 2017. A non-obese healthy volunteer was considered if his/her BMI was less than
28 kg/m2. In addition, recruited volunteers had to meet all of the following criteria—(1) no antibiotics
intake in the previous 2 months; (2) no prebiotic or probiotic supplement intake in the previous
2 months; (3) not have hypertension, diabetes mellitus, gastrointestinal disease, and other severe
auto-immune diseases; (4) regular eating and lifestyle patterns; and (5) no international travel in
the previous 3 months. A total of 50 individuals met all criteria and were recruited for the study,
and 41 individuals (24 females and 17 males aged 30 ± 6 years old) completed the whole intervention
(Table 1). There were no differences in age and BMI between the two sexes and, thus, further analyses
were performed on the entire cohort (Table 1). The study was approved by the institutional review
board on bioethics and biosafety of BGI-Shenzhen, Shenzhen (NO. BGI-IRB 17020) and registered at
clinicaltrials.gov as NCT04044118. All participants were fully informed of the design and purpose of
this intervention study and signed a written informed consent letter.

Table 1. Cohort Description.

Cohort Total
(Mean ± SD) Women Men P Value

(Women vs. Men)

Number of subjects 41 24 17 /
Age 30 ± 6 28 ± 5 32 ± 9 0.383

BMI (kg/m2) 23.72 ± 2.81 23.31 ± 2.50 24.30 ± 3.18 0.198

2.2. Study Design

The study was designed as an uncontrolled longitudinal study with all volunteers receiving
the same intervention but with no control group. Specifically, it included a one-week, run-in period
(baseline) and a three-week CR dietary intervention period. During the first week (run-in period),
all healthy volunteers consumed their usual diet and were encouraged to avoid yogurt, high-fat foods,
and alcohol. During the three-week CR dietary intervention, five different types of low-calorie meals
were provided for the five-day workweek (from Monday to Friday), each consisted of 3 meals per day
(breakfast, lunch, and dinner). All participants were subjected to the same dietary calorie restriction
and were required to finish the meals at the canteen. As no standardized meals were provided at the
weekend, all participants were required to take pictures of their food, record, and follow the low daily
calorie intake by using the Boohee APP, a mobile application with calorie-counter and food guides.
BMI data, fasting blood samples, and fecal samples of each volunteer were collected at our study
center at baseline and after the 3-week CR intervention (Figure 1). To avoid intra-individual variations,
BMI was measured multiple times for each volunteer, during the last week of the CR intervention, and
the averaged BMI value was used as his/her after-intervention BMI (Figure 1).

2.3. Diets

The CR diet consisted of ~60% calories of the recommended daily calorie intake for men and women
in the 2016 Dietary Guidelines for Chinese Residents [21] (men: 2400 kcal/day; women: 2000 kcal/day).
The average daily calorie supply in this study was 1414.9 kcal/day for men and 1210.6 kcal/day for
women, with 43% calories from carbohydrates, 25% calories from protein, and 32% calories from fat
(Table S1). The energy intake per day of the CR diet was calculated based on the detailed composition
of the low-calorie meals, using the Chinese food composition tables [22]. Common foods in low-calorie
diets such as rice, vegetables, eggs, pork, and beef were prepared in our study center to control
the experimental variables introduced by different foods and calorie estimation errors. Traditional
Chinese cooking methods—boiling, stir-frying, and stewing—were applied for our diets. For each
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meal, digital scales were used to measure the nutritional and caloric values of different foods and the
total meal for men and women, respectively.Nutrients 2020, 12, 631 4 of 15 
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Figure 1. Overview of the experimental design. Illustration of our experimental design, including a
1-week run-in period (baseline) and a 3-week calorie restriction (CR) dietary intervention trial with
approximately 40% energy deficit of the recommended daily calorie intake (men, ~1414.9 Kcal/day;
women, ~1210.6 Kcal/day). Body Mass Index (BMI), fasting blood samples, and fecal samples of
41 enrolled healthy and non-obese subjects were collected before and after the intervention to assess
the effects of CR on BMI, blood amino acids, and the gut microbiome.

2.4. Fecal Sampling and Shotgun Metagenomic Sequencing

Fecal samples were self-collected and then transferred to the laboratory on dry ice and kept
frozen at −80 ◦C before and after the CR intervention. Fecal DNA was extracted, following a manual
protocol, as described previously [23]. The DNA concentration was estimated by Qubit (Invitrogen).
Library construction and shotgun metagenomic sequencing were performed on qualified DNA samples,
based on the BGISEQ-500 protocol in the single-end 100 bp mode [24].

2.5. Metagenomic Analysis

Raw reads of BGISEQ-500 with the SE100 mode were trimmed by an overall accuracy (OA) control
strategy, to control quality [24]. After trimming, on average, 98.15% of the raw reads remained as
high-quality reads (Table S2). By using the SOAP2.22 software, the high-quality reads were aligned
to hg19 to remove the reads from the host DNA (identity ≥ 0.9). The retained clean reads were
aligned to the integrated non-redundant gene catalog (IGC) using SOAP2.22 [25], and the average
mapping rate and unique mapping rate were 80.18% and 65.76%, respectively (identity ≥ 0.95, Table S2).
The relative abundance profiles of genes, genera, species, and Kyoto Encyclopedia of Genes and
Genomes orthologous groups (KEGG, KOs) of each sample were calculated by summing the relative
abundances of their assigned IGC genes [25].

For enterotyping, we applied a recently published universal classifier (http://enterotypes.org/),
which circumvents major shortcomings in enterotyping methodology, such as lack of standard and small
sample size [26]. At the baseline, 41 individuals were clustered into two groups—28 ETB (Bacteroides
enriched) and 13 ETP (Prevotella enriched) individuals. A total of 87.8% (36 of 41) individuals were
clustered to the same enterotype, after the three-week CR intervention. Detailed enterotype information
for each individual is provided in Table S3.

Genus or species with an occurrence rate > 80% and a median relative abundance > 1 × 10e-6 in
all samples, were defined as common genus or species and used for further intra- and inter-enterotype
comparison analyses.

Differentially enriched KEGG pathways were identified between the enterotypes based on the
distribution of Z-scores of all KOs belonging to a given pathway [27,28]. A reporter score |Z| > 1.96

http://enterotypes.org/
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(95% confidence interval according to a normal distribution) was used as a detection threshold for
significantly differentiating pathways. Alpha diversity of each individual was calculated on the gene
and species relative abundance profiles, using the Shannon index. Beta-diversity on the gene and
species relative abundance profiles was calculated using the Bray–Curtis distance.

2.6. Blood Sample Collection and Amino Acids Profiling

Fasting blood samples were collected before and after the intervention and stored at −80 ◦C for
assessing the effect of CR on host amino acid profiles. The concentrations of 31 amino acids and
derivatives in the serum samples were measured via ultra-high performance liquid chromatography
(UHPLC), coupled to an AB Sciex Qtrap 5500 mass spectrometry (AB Sciex, Massachusetts, USA),
as described previously [29].

2.7. Statistical Methods

Pearson’s chi-square test was performed to assess sex distribution between individuals of two
enterotypes. Wilcoxon rank-sum test was used to detect the significant differences in phenotypes,
the concentrations of blood amino acids, and the relative abundances of genera and species between
enterotypes. Wilcoxon signed-rank test was used to detect the significant differences in phenotypes,
the concentrations of blood amino acids, and the relative abundances of genera and species in paired
samples, before and after the intervention. BMI loss ratio of a given individual was calculated using
the following equation:

BMI loss ratio =
Be f oreBMI −A f terBMI

Be f oreBMI
∗ 100%

where Be f oreBMI and A f terBMI are the BMI value of the same individual before and after the CR
intervention, respectively.

The associations between the changes of blood amino acids and the overall baseline gut microbial
composition were assessed using permutational multivariate analysis of variance (PERMANOVA)
with 9999 permutations on enterotypes (R vegan package, adonis function).

Principal coordinate analysis (PCoA) of fecal samples was performed, based on the relative
abundances of common species using the Bray–Curtis distance (R ape package). Principal component
analysis (PCA) was performed based on the blood amino acid profiles to visual overall amino acid
composition between enterotypes and between different time points.

To investigate whether we could predict BMI loss ratio using omics features, we performed a
Lasso (Least absolute shrinkage and selection operator) regression analysis between baseline relative
abundances of common gut species and the concentrations of blood amino acids (independent
variables), and BMI loss ratio (dependent variables).

We first normalized the values of both independent and dependent variables (R, scale function).
We then used the R function cv.glmnet to choose the most appropriate value for λ in the Lasso model (R
glmnet package, family = “gaussian”, nfolds = 10, alpha = 1, nlambda = 100). Here, λ is the tuning
parameter (λ > 0), which controls the strength of the shrinkage of the variables [30]. We then applied
the Lasso feature selection process by shrinking the Lasso regression coefficients of non-informative
variables to zero, and selecting the variables of non-zero coefficients. Seven gut microbial species,
including Clostridium bolteae, Clostridium ramosum, Dorea longicatena, Coprococcus eutactus, Streptococcus
mitis, Clostridiales genomosp. BVAB3, and Mobiluncus curtisii were selected at this step [30]. To reduce
overfitting with a limited sample size (n = 41), we applied leave-one-out cross-validation (LOOCV) to
estimate the prediction performance of BMI loss ratio using a generalized linear model (GLM) of the
seven selected features (creatFolds function in R caret package and the glm function in R base package).
Likewise, we also used baseline BMI values for LOOCV to estimate its prediction performance for
CR-associated BMI loss ratio. Spearman’s rho values were calculated between actual BMI loss ratios
and the predicted values.
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P-value adjustment was applied for multiple hypothesis testing on the concentrations of blood
amino acids, the relative abundances of gut microbial genera and species used the Benjamini–Hochberg
(BH) method. A BH-adjusted P value less than 0.05 was considered as statistically significant.
The significance for α-diversity, β-diversity, and phenotypes (age, female to male ratio, BMI, and BMI
loss ratio) was set at p < 0.05. All statistical analyses were conducted using R (version 3.5.0)

3. Results

3.1. BMI Loss of ETB and ETP Subjects Responded Differentially to CR Intervention

Based on the baseline genera abundance profile, individuals can be robustly clustered into two
enterotypes—enterotype Bacteroides (ETB, n = 28) and enterotype Prevotella (ETP, n = 13) (See Materials
and Methods, Figure 2A).
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Figure 2. A short-term CR intervention altered BMI. (A) Principal coordinates analysis (PCoA) based
on genera-level Bray–Curtis distance between all baseline fecal samples. Orange, subjects of enterotype
Bacteroides (ETB) and blue, subjects of enterotype Prevotella (ETP). (B) Baseline BMI between ETB and
ETP subjects. (C) Changes in BMI before and after intervention in individuals of each enterotype.
(D) Boxplot showing BMI loss ratio between ETB subjects and ETP subjects. *, P < 0.05; **, P < 0.01.

Comparisons of the baseline phenotypes between two enterotype groups revealed that all collected
phenotypes, including sex distribution (women/men ratio), age and BMI, showed no significant
differences between ETB and ETP subjects (Table 2, Figure 2B). By contrast, the baseline compositional
and functional characteristics of the gut microbiota showed marked differences between the two
groups, in agreement with previous studies [10,31,32]. Thus, genera Prevotella and Paraprevotella and
four species from the two genera were significantly enriched in ETP subjects, whereas 19 common
species, from genera Bacteroides and Clostridium, including C. bolteae and C. ramosum, were significantly
enriched in ETB subjects (Wilcoxon rank-sum test, BH-adjusted P < 0.05; Figure S1A, Tables S4
and S5). At the functional level, multiple pathways were highly enriched in ETB subjects, such as
pathways involved in histidine metabolism (map00340), carbohydrate metabolism, secondary bile acid
biosynthesis (map00121), membrane transport (phosphotransferase system, map02060; ABC transport,
map02010), and in the metabolism of porphyrin and chlorophyll (map00860), lipoic acid (map00785),
and biotin (map00780). On the other hand, only five pathways including biosynthesis of phenylalanine,
tyrosine and tryptophan (map00400), peptidoglycan (map00550) and terpenoid backbone (map00900),
methane metabolism (map00680) and purine metabolism (map00230), were enriched in ETP subjects
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(|reporter score| > 1.96, Figure S1B, Table S6). These compositional and functional differences between
enterotypes might, thus, reflect their microbial trophic niche differentiation.

Table 2. Comparison of baseline phenotypes of ETB and ETP subjects.

ETB Group
(Mean ± SD)

ETP Group
(Mean ± SD)

P Value
ETB vs. ETP

Number of subjects 28 13
Sex (women/men) 16/12 8/5 1

Age 29 ± 6 30 ± 7 0.44
BMI (kg/m2) 23.50 ± 2.81 24.21 ± 2.85 0.42

After the 3-week CR intervention, BMI values were decreased significantly in both ETB and
ETP subjects (Figure 2C; Wilcoxon Signed-rank test, P < 0.05). Interestingly, subsequent analysis
revealed that the ETP subjects showed a significantly greater BMI loss ratio than the ETB subjects
(Wilcoxon rank-sum test, P < 0.05; mean BMI loss ratio 3.27% versus 1.84%; Figure 2D; see Materials
and Methods).

3.2. Overall Gut Microbiome Composition Is Stable to CR Intervention

We next investigated the extent and impacts of the CR intervention on gut microbial composition
in subjects of different enterotypes. Principal coordinate analysis (PCoA) based on species abundance
profile of all samples showed that the projected coordinates of each enterotype group did not change
significantly before and after the intervention (Figure 3A, P > 0.05). Furthermore, 23 of the 28 ETB
subjects and 12 of the 13 ETP subjects were assigned to the same enterotypes after the intervention
(Table S3). In addition, α-diversity (Figure 3B,C) and β-diversity (Figure 3D,E) at the gene and
species level of fecal samples also showed no significant changes before and after the intervention
in two enterotype groups, respectively (Wilcoxon Signed-rank test, P > 0.05). We further revealed
that no common species differed significantly in abundance, before and after the intervention in each
enterotype group (Table S7, BH-adjusted P > 0.05). All these findings suggest overall stable gut
microbial composition in response to a 3-week ~40% energy deficit CR intervention.Nutrients 2020, 12, 631 8 of 15 
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Figure 3. Overall gut microbial composition of two enterotypes before and after the CR.
(A) Species-based principal coordinates analysis (PCoA) of subjects before and after the CR trial.
Triangle, samples of ETB; circles, samples of ETP. Arrows indicate paired samples from the same
individual. Boxplot showing the projected coordinate 1 (PCo1) and PCo2 of samples before and after
the intervention. (B,C) α-diversity (Shannon index) at the gene and species levels before (blue) and
after (red) intervention in each enterotype group. (D,E) β-diversity (Bray–Curtis distance) at the gene
and species levels, before (blue) and after (red) the intervention in each enterotype group. ns—no
significance, P > 0.05, Wilcoxon signed-rank test.
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3.3. Enterotype-Independent Alterations of Blood Amino Acids to CR Intervention

Reflecting differential gut microbial functional potentials including amino acid metabolism
between the two enterotype groups (Figure S1B), we asked whether blood amino acid composition
was associated with enterotype. Principal component analysis (PCA) of baseline amino acid profiles
showed no separation of subjects of two enterotypes (Figure 4A). In line with this result, we found no
significant differences in the baseline levels of blood amino acids between the two enterotype groups
(Wilcoxon rank-sum test, BH-adjusted P > 0.05, Figure 4B). We further performed PERMANOVA and
identified no significant associations between the changes of blood amino acids and the overall gut
microbial composition at baseline (BH-adjusted P > 0.05, Table S8).Nutrients 2020, 12, 631 9 of 15 
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Figure 4. A short-term CR intervention altered the blood amino acids. (A) Principal component
analysis (PCA) of 41 subjects using baseline blood amino acid profiles. Orange, ETB; blue, ETP.
(B) Comparison of baseline blood amino acid levels between ETB and ETP subjects; dashed lines
indicate the absolute Z score of 1.96 (P = 0.05); orange and blue bars indicate that the Z-score of
blood amino acid was overrepresented in ETB and ETP subjects, respectively; Wilcoxon rank-sum test,
P values are transformed to Z-scores to represent enrichment directions. (C) Amino acid-based PCA
of samples before and after the intervention. Triangle—samples of ETB subjects; Circles—samples of
ETP subjects. Arrows indicate paired samples from the same individual. (D) Changes in blood amino
acid concentrations of ETB subjects, ETP subjects, and all subjects before and after the intervention.
Wilcoxon signed-rank test, P values are transformed to Z-scores to represent enrichment directions.
Dashed lines indicate the absolute Z score of 1.96 (P = 0.05). Asterisk (*) indicates the statistical
significance at Benjamini–Hochberg (BH) adjusted P < 0.05.

We next examined the potential impacts of the CR diet on blood amino acids. Notably, we observed
similar changes in multiple blood amino acid concentrations in subjects of both enterotypes,
in response to the CR intervention (Figure 4C,D). We, therefore, combined all samples and found
that levels of 13 blood AAs and their derivatives such as α-aminoisobutyric acid, β-alanine, serine,
glycine, lysine, 2-aminoadipic acid (an intermediate in lysine metabolism), and 3-methyl-histidine
were significantly increased whereas only one measured amino acid tyrosine was significantly
decreased after the intervention (Wilcoxon Signed-rank test, BH-adjusted P < 0.05, Figure 4D).
Furthermore, no significant differences were detected in the levels of blood amino acids between ETB
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and ETP subjects, after the CR intervention (Wilcoxon rank-sum test, BH-adjusted P > 0.05, Figure S2),
suggesting enterotype-independent effects of the CR intervention on fasting blood amino acids.

3.4. Prediction of BMI Loss Ratio Induced by CR Intervention Using Gut Microbial Species

Considering the differential response in the BMI loss ratio to the CR intervention in two
enterotypes, we next asked whether we could predict BMI loss ratio from the baseline omics measures.
We, thus, built a Lasso (Least absolute shrinkage and selection operator) shrinkage model between
baseline levels of gut microbial species and blood amino acids and BMI loss ratio (See Materials
and Methods). We successfully selected seven gut microbial species showing associations with BMI
loss ratio (absolute coefficient estimate > 0, Figure 5A). Interestingly, the relative abundances of
2 selected species C. bolteae and C. ramosum, which were enriched in ETB (Wilcoxon rank-sum test,
BH-adjusted P < 0.05, Figure S1A, Table S5), were negatively correlated with BMI loss ratio. On the
other hand, the relative abundance of D. longicatena, which was slightly enriched in ETP (Wilcoxon
rank-sum test, BH-adjusted P = 0.06), was positively correlated with the BMI loss ratio (Figure 5A).
Baseline abundances of the other 4 Lasso selected species, however, showed no significant differences
between the two enterotype groups (BH-adjusted P > 0.05, Table S5). Among them, the abundances of
Coprococcus eutactus, Streptococcus mitis, and Clostridiales genomosp. BVAB3 were positively associated
with BMI loss ratio, whereas the abundance of Mobiluncus curtisii was negatively associated with a
BMI loss ratio (Figure 5A).
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Figure 5. Prediction of BMI loss ratio using baseline abundances of gut microbial species. (A) Bar
plot showing the 7 gut microbial species selected by least absolute shrinkage and selection operator
(Lasso). Bar length indicates a regression coefficient of each species estimated by Lasso. Orange, species
significantly enriched in ETB subjects (BH-adjusted P < 0.05); blue, species slightly enriched in ETP
subjects (P < 0.05 and BH-adjusted P = 0.06); grey, species with no significant enrichment between two
enterotypes (P > 0.05). (B) Scatter plot showing prediction performance of BMI loss ratio based on the
7 selected species. Leave-one-out cross-validation (LOOCV) was applied to evaluate the performance of
the generalized linear model (GLM), showing a strong Spearman’s rho between actual BMI loss ratios
and predicted BMI loss ratios of 0.646. Red circles—ETB individuals; blue circles—ETP individuals.

To estimate the performance of 7 gut microbial species on the prediction of BMI loss ratio,
we applied a general linear model between the predicted BMI loss ratios and the actual values using
leave-one-out cross-validation (LOOCV). Notably, the result showed a Spearman’s rho of 0.646 between
actual and predicted BMI loss ratio, by using baseline abundances of 7 gut microbial species (Figure 5B,
see Materials and Methods). By contrast, we found that the individual baseline BMI could hardly
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predict their BMI loss ratio after the CR intervention, with a Spearman’s rho of −0.016 between the
predicted and actual BMI loss ratio (Figure S3).

4. Discussion

Little is known about the effect of short-term CR on the gut microbial community and amino
acid metabolism in non-obese adult individuals [33]. Here, we conducted a non-controlled study and
found that a 3-week 40% energy deficit CR diet could induce a significant reduction in BMI as well
as changes in blood amino acids, but limited the changes in gut microbial composition in non-obese
subjects. We also demonstrated that CR-induced blood AA changes might be attributed mainly to host
skeletal muscle protein breakdown and were gut microbial-independent. Moreover, our study shows
that subjects with different baseline enterotypes had differential BMI loss responding to the 3-week CR
diet, and pre-intervention gut microbial composition could well predict CR-induced BMI loss.

The levels of multiple AAs and AA derivatives in non-obese individuals were significantly
increased after intervention, such as α-aminoisobutyric acid, serine, glycine, lysine, tryptophan,
glutamine, aspartate and 3-methylhistidine, a suitable biomarker for skeletal muscle protein
breakdown [34,35]. It has been demonstrated that muscle protein degradation is the only endogenous
source of 3-methylhistidine in human plasma [36,37]. Although plasma 3-methylhistidine might
be influenced by food intake, a study has suggested that about 80% of plasma 3-methylhistidine
was of endogenous origin, after an overnight fast [38]. Compared to a regular diet, the amount of
daily protein intake was substantially reduced; therefore, the CR diet would hardly contribute to the
significant increases in fasting levels of 3-methylhistidine and other amino acids. Based on the above
observations, we suggested that the 3-week low energy diet intervention could induce increased host
skeletal muscle protein degradation. Interestingly, two previous studies have consistently indicated
that compared to CR without exercise, CR with exercise could help to preserve lean mass and have
additional beneficial effects on host metabolism [39,40]. Thus, all of the above findings might suggest
the need of a combined exercise and CR intervention for reducing host muscle loss resulting from a
protein-deficient, low-calorie diet. In contrast, the tyrosine, a nonessential amino acid, which could be
found in a variety of protein-rich foods, was significantly reduced after CR intervention, which was in
line with the findings from a previous human study, which revealed the impacts of a 2-year long-term
dietary intervention on weight loss and circulating amino acids [41].

On the other hand, we showed that a 3-week 40% energy deficit CR diet had limited effects on the
microbial alpha- and beta-diversity of non-obese healthy adults, suggesting the overall stability of the
adult gut microbiota, in line with a recent study based on 4-week CR intervention in obese women [17].
One possible explanation could be that we reduced the subject’s caloric intake but did not change
their long-term eating habits associated with gut microbiota. In addition, some recent studies have
indicated that gut microbial responses to a specific diet could be personalized or sex-dependent [42,43].
Further CR intervention studies with larger sample sizes and known food composition are needed to
assess individual gut microbiota–diet interactions. Moreover, we observed that ETP subjects exhibited
a higher BMI loss ratio than ETB subjects after CR. Consistently, two recent studies have also reported
that overweight subjects with a high Prevotella/Bacteroides ratio had a greater weight loss than those
with a low Prevotella/Bacteroides ratio, when receiving a 6-week whole grain-rich diet [44], or a 24-week
energy-deficit diet (~500 kcal/day) [45]. Enterotypes, indeed, have been linked to long-term diet
habits [32]. Both Prevotella and Bacteroides have played pivotal roles in carbohydrate metabolism,
while showing various fiber-utilizing capacity [46,47]. The gut microbiota of ETB and ETP subjects,
thus, might possibly ferment indigestible dietary fibers from the same diet into different levels and
ratios of SCFA (acetate, propionate, and butyrate), which are considered to be energy sources for
colonocytes [48]. One possible explanation could be that ETB subjects of higher abundance of Bacteroides
might have a higher efficiency in energy extraction from a low-calorie diet, to reduce weight loss.
Additionally, we also built a microbiota-based model and showed that baseline abundances of seven
species showed a high performance for prediction of CR-induced BMI loss. Although none of them were
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assigned to genera Prevotella and Bacteroides, a few studies have reported their alterations in obese mice
or humans [49–52]. In line with the higher BMI loss in subjects with ETP, D. longicatena was positively
associated with BMI loss and enriched in subjects with ETP, while C. bolteae and C. ramosum were
inversely associated with BMI loss and enriched in subjects with ETB. These findings might suggest
that clinical implications of non-enterotype-dominant species are still under investigation. In addition
to the differences in functional capacity in SCFA production, we and others have shown that different
enterotypes also harbored distinct metabolic capacity for several amino acids and secondary bile acids.
Compared to type 2 diabetic patients with Bacteroides enterotype, those with Prevotella enterotype had
higher levels of deoxycholic acid and lithocholic acid, and less metabolic improvement, after acarbose
treatment [20]. In addition, Prevotella could perform biosynthesis of branched-chain amino acids
(BCAA), and germ-free mice that received oral gavage of P. copri showed elevated plasma BCAA
levels and insulin resistance levels [53]. All findings have suggested potential enterotype-dependent
differences in modulating host energy and metabolic homeostasis and the underlying mechanisms.

Limitations of the study: We observed that the increase in 3-methylhistidine during CR and
suggested that CR induced muscle degradation; however, the measures of fat and lean mass before
and after CR were lacking to confirm the inference. We showed that the BMI loss in ETP subjects was
higher than that in ETB subjects, but we did not record the regular daily energy intake for each subject.
A same calorie-restricted diet might stand for different magnitudes of energy deficits in different
subjects. Thus, we could not exclude whether the possible differences in baseline energy consumptions
between ETB and ETP subjects could contribute to their differences in BMI loss. We were not able to
detect significant associations between gut microbiota and blood AA levels, which might be due to a
relatively small sample size of this study. In addition, the study was non-controlled and all volunteers
received the same intervention but with no control group, thus, we could not assess the possible
short-term variations of gut microbial composition and fasting blood AA profiles in subjects with
normal daily calorie intake. We hope that our further work will provide more mechanistic insights
into the interactions between CR, and gut microbiota and human metabolism, and will help accelerate
the development of microbiota-based personalized solutions in nutrition intervention.
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